References

Borst, T., & Witt, N. (2016). Content recommendation by means of EEXCESS (Blogpost). http://zbw.eu/labs/de/blog/content-recommendation-by-means-of-eexcess .

Dzeyk, W. (2015). Die Nutzung von Social-Media-Diensten in der Wissenschaft- Merkmale und Typologie. Online-Studie 2015 im Auftrag von Goportis-Leibniz- Bibliotheksverbund Forschungsinformation. Retrieved July 19, 2016, from www.goportis.de/fileadmin/user_upload/Bericht_Goportis_Nutzung_von_Sociall-Media-Diensten_in_der_Wissenschaft_Daten_und_Ergebnisse_2015.pdf. .

Orgel, T., Höffernig, M., Bailer, W., & Russegger, S. (2015). A metadata model and mapping approach for facilitating access to heterogeneous cultural heritage assets. International Journal on Digital Libraries, 15(2–4), 189–207. http://dx.doi.org/10.1007/s00799-015-0138-2.

Petit, A., Ben Mokhtar, S., Brunie, L., & Kosch, H. (2014). Towards efficient and accurate privacy preserving web search. Presented at the Middleware for Next Generation Internet Computing Workshop of the 15th International Middleware Conference. Retrieved July 19, 2016, from http://eexcess.eu/wp-content/uploads/2013/03/Towards_Efficient_and_Accurate_Privacy_Preserving_WebSearch.pdf.

Rowlands, I., Nicholas, D., Williams, P., Huntington, P., Fieldhouse, M., Gunter, B., … Tenopir, C. (2008). The Google generation: the information behaviour of the researcher of the future. Aslib Proceedings, 60(4), 290–310. http://dx.doi.org/10.1108/00012530810887953.

Schlötterer, J., Seifert, C., Lutz, W., & Granitzer, M. (2015). From context-aware to context-based: Mobile just-in-time retrieval of cultural heritage objects. In A. Hanbury, G. Kazai, A. Rauber, & N. Fuhr (Eds.): Advances in Information Retrieval – 37th European Conference on IR Research, ECIR 2015, Proceedings – Lecture Notes in Computer Science 9022 (pp. 805–808). Berlin: Springer. Retrieved July 19, 2016, from http://eexcess.eu/wp-content/uploads/2013/03/Schloetterer2015a_ecirdemo_eexcess-android-app.pdf.

Seifert, C., Schlötterer, J. & Granitzer, M. (2015). Towards a feature-trich data set for personalized access to long-tail content. In SAC ’15, Proceedings of the 30th Annual ACM Symposium on Applied Computing (PP. 1031–1038). New York: ACM. http://dx.doi.org/10.1145/2695664.2695671.

Veas, E., Mutlu, B., di Sciascio, C., Tschinkel, G., & Sabol, V. (2015). Visual recommendations for scientific and cultural content. In J. Braz, A. Kerren, & L. Linsen (Eds.), Proceedings of the 6th International Conference on Information Visualization Theory and Applications (pp. 256–261). Setúbal, Portugal: Scitepress. Retrieved July 19, 2016, from http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=ZVQcsK976XQ=&t=1. . http://dx.doi.org/10.5220/0005352802560261.