References

Arlitsch, K., & Newell, B. (2017). Thriving in the age of accelerations: A brief look at the societal effects of artificial intelligence and the opportunities for libraries. Journal of Library Administration, 57(7), 789–798. https://doi.org/10.1080/01930826.2017.1362912

Braidotti, R. (2019). Posthuman knowledge (First published 2019.). Polity.

Brown, T. (2008). Design thinking. Harward Business Review, 86(6), 84–92.

Brown, T. (2009). Change by design: How design thinking transforms organizations and inspires innovation. HarperCollins Publishers.

Collomb, C., & Goyet, S. (2020). Meeting the machine halfway. In S. Karkulehto, A.-K. Koistinen, & E. Varis (Eds.), Reconfiguring human, nonhuman and posthuman in literature and culture (pp. 203–217). Routledge.

Dorst, K. (2015). Frame innovation: Create new thinking by design. The MIT Press; EbscoHost.

Dutton, W. H. (2013). The social shaping of digital research. International Journal of Social Research Methodology, 16(3), 177–195. https://doi.org/10.1080/13645579.2013.774171

Elo, S., Kääriäinen, M., Kanste, O., Pölkki, T., Utriainen, K., & Kyngäs, H. (2014). Qualitative content analysis: A focus on trustworthiness. SAGE Open, 4(1), 215824401452263. https://doi.org/10.1177/2158244014522633

Escobar, A. (2018). Designs for the Pluriverse. Radical interdependence, autonomy, and the making of worlds. Duke University Press.

Foster, M. J., & Jewell, S. T. (Eds.). (2017). Assembling the pieces of a systematic review: Guide for librarians. Rowman & Littlefield.

Gasparini, A. (2015). Perspective and use of empathy in design thinking. ACHI 2015, Proceedings of the Eighth International Conference on Advances in Computer-Human Interactions (pp. 49–54).

Gasparini, A. (2020). Design thinking for design capabilities in an academic library [University of Oslo]. https://www.duo.uio.no/handle/10852/72835.

Gill, K. S. (2017). Uncommon voices of AI. AI & SOCIETY, 32(4), 475–482. https://doi.org/10.1007/s00146-017-0755-y

Hart, C. (1998). Doing a literature review. Releasing the social science research imagination. SAGE Publications.

Holtzblatt, K., & Beyer, H. (2017). Contextual design: Design for life (2nd ed.). Morgan Kaufmann.

Kautonen, H., & Nieminen, M. (2018). Conceptualising benefits of user-centred design for digital library services. LIBER Quarterly, 28(1), 1. https://doi.org/10.18352/lq.10231

Keinonen, T. (2010). Protect and appreciate – Notes on the justification of user-centered design. International Journal of Design, 4(1), 17–27. http://www.ijdesign.org/index.php/IJDesign/article/view/561/280

Kimbell, L. (2009). The turn to service design. In G. Julier & L. Moor (Eds.), Design and creativity: Policy, management and practice (English ed, pp. 157–173). Berg Publishers.

Kimbell, L. (2019). Designing policy objects: Anti-heroic design. In T. Fisher & L. Gamman (Eds.), Tricky Design: The Ethics of Things (pp. 145–157). Bloomsbury Publishing Plc. https://doi.org/10.5040/9781474277211

Kimbell, L., & Bailey, J. (2017). Prototyping and the new spirit of policy-making. CoDesign, 13(3), 214–226. https://doi.org/10.1080/15710882.2017.1355003

Kimbell, L., & Vesnić-Alujević, L. (2020). After the toolkit: Anticipatory logics and the future of government. Policy Design and Practice, 3(2), 95–108. https://doi.org/10.1080/25741292.2020.1763545

Koskinen, I., Battarbee, K., & Mattelmäki, T. (2003). Empathic design. IT-press.

Latour, B. (2013). An inquiry into modes of existence: An anthropology of the moderns (C. Porter, Trans.). Harvard University Press.

Miettinen, S., & Koivisto, M. (Eds.). (2009). Designing services with innovative methods. University of Art and Design Helsinki/Kuopio Academy of Design, Savonia University of Applied Sciences.

Nelson, H. G., & Stolterman, E. (2012). The design way. Intentional change in an unpredictable world (2.). The MIT Press; ProQuest EBook Central.

Paton, B., & Dorst, K. (2011). Briefing and reframing: A situated practice. Design Studies, 32, 573–587. Elsevier Science Direct. https://doi.org/10.1016/j.destud.2011.07.002

Priestner, A. (Ed.). (2020). User experience in libraries: Yearbook 2019.

Priestner, A. (2021). A handbook of user experience research & design in libraries. UX in Librarires.

Smart, A., & Smart, J. (2017). Posthumanism. University of Toronto Press.

Stahl, B. C. (2021). Artificial intelligence for a better future: An ecosystem perspective on the ethics of AI and emerging digital technologies. Springer International Publishing. https://doi.org/10.1007/978-3-030-69978-9

Thompson, T. F. (2019). Posthuman folklore (First printing). University Press of Mississippi.

UNISILO. (2019). AI in Academic Publishing Survey (p. 12) [Survey]. https://unsilo.ai/wp-content/uploads/2019/11/unsilo-Survey-on-ai-in-Academic-Publishing-2019.pdf

Whicher, A. (2017). Design ecosystems and innovation policy in Europe. Strategic Design Research Journal, 10(2), 117–125. https://doi.org/10.4013/sdrj.2017.102.04

Young, S. W. H., Chao, Z., & Chandler, A. (2020). User experience methods and maturity in academic libraries. Information Technology and Libraries, 39(1). https://doi.org/10.6017/ital.v39i1.11787

Reviewed literature

Adams Becker, S., Cummins, M., Davis, A., Freeman, A., Giesinger Hall, C., Ananthanarayanan, V., Langley, K., & Wolfson, N. (2017). NMC Horizon report: 2017 Library Edition. https://www.nmc.org/publication/nmc-horizon-report-2017-library-edition/

Alam, Md. S., Abdullah-Al-Jubair, Md., Rahman, Md. A., Supti, T. I., Tabassum, R., Ara, T., & Weng, N. G. (2020). Electronic opinion analysis system for library (E-OASL). Proceedings of the International Conference on Computing Advancements, 1–6. https://doi.org/10.1145/3377049.3377066

Alexander, B., Ashford-Rowe, K., Barajas-Murphy, N., Dobbin, G., Knott, J., McCormack, M., Pomerantz, J., Seilhamer, R., & Weber, N. (2019). Educause Horizon report: 2019 Higher Education edition. https://library.educause.edu/resources/2019/4/2019-horizon-report

Ali, M. Y., Naeem, S. B., & Bhatti, R. (2020). Artificial intelligence tools and perspectives of university librarians: An overview. Business Information Review, 37(3). Scopus. https://doi.org/10.1177/0266382120952016

Allison, D. (2012). Chatbots in the library: Is it time? Library Hi Tech, 30(1), 95–107. https://doi.org/10.1108/07378831211213238

American Library Association. (2019, February 4). Artificial Intelligence [Text]. Tools, publications & resources. http://www.ala.org/tools/future/trends/artificialintelligence

Arlitsch, K., & Newell, B. (2017). Thriving in the age of accelerations: A brief look at the societal effects of artificial intelligence and the opportunities for libraries. Journal of Library Administration, 57(7), 789–798. https://doi.org/10.1080/01930826.2017.1362912

Arms, W. Y. (2012). The 1990s: The formative years of digital libraries. Library Hi Tech. https://doi.org/10.1108/07378831211285068

Asemi, A., Ko, A., & Nowkarizi, M. (2020). Intelligent libraries: A review on expert systems, artificial intelligence, and robot. Library Hi Tech, ahead-of-print(ahead-of-print). https://doi.org/10.1108/LHT-02-2020-0038

Baba, K., Minami, T., & Nakatoh, T. (2016). Predicting book use in university libraries by synchronous obsolescence. Procedia Computer Science, 96, 395–402. https://doi.org/10.1016/j.procs.2016.08.082

Bao, J., Tao, J., Wen, C., & Zhang, J. (2017). Design and implementation of an APP-based intelligent service system. In V. E. Balas, L. C. Jain, X. Zhao, & F. Shi (Eds.), Information technology and intelligent transportation systems (itits 2017) (Vol. 296, pp. 125–133). Ios Press. https://doi.org/10.3233/978-1-61499-785-6-125

Benedetti, A., Boehme, G., Caswell, T., Denlinger, K., Li, Y., McAllister, A., Quigley, B., Soehner, C., Wang, M., & Wesolek, A. (2020). 2020 Top trends in academic libraries. Library Faculty Presentations & Publications. https://digitalcommons.unf.edu/library_facpub/80

Bethard, S., Ghosh, S., Martin, J. H., & Sumner, T. (2009). Topic model methods for automatically identifying out-of-scope resources. Proceedings of the 9th ACM/IEEE-CS Joint Conference on Digital Libraries, 19–28. https://doi.org/10.1145/1555400.1555405

Boman, C. (2019). Chapter 4. An exploration of machine learning in libraries. Library Technology Reports, 55(1), 21–25.

Bourg, C. (2017, March 17). What happens to libraries and librarians when machines can read all the books? Feral Librarian. https://chrisbourg.wordpress.com/2017/03/16/what-happens-to-libraries-and-librarians-when-machines-can-read-all-the-books/

Brygfjeld, S. A., Wetjen, F., & Walsøe, A. (2017). Machine learning for production of Dewey Decimal. http://library.ifla.org/2216/

Burton, M., Lyon, L., Erdmann, C., & Tijerina, B. (2018). Shifting to data savvy: The future of data science in libraries (p. 25) [Project Report]. University of Pittsburgh. http://d-scholarship.pitt.edu/33891/

Cao, G., Liang, M., & Li, X. (2018). How to make the library smart? The conceptualization of the smart library. The Electronic Library, 36(5), 811–825. https://doi.org/10.1108/EL-11-2017-0248

Clough, P., Tang, J., Hall, M. M., & Warner, A. (2011). Linking archival data to location: A case study at the UK National Archives. Aslib Proceedings, 63(2/3), 127–147. https://doi.org/10.1108/00012531111135628

Cordell, R. (2020). Machine Learning + Libraries. A report on the state of the field (p. 97). LC Labs Library of Congress. https://labs.loc.gov/static/labs/work/reports/Cordell-LOC-ML-report.pdf

Cox, A. M., Kennan, M. A., Lyon, L., Pinfield, S., & Sbaffi, L. (2019a). Maturing research data services and the transformation of academic libraries. Journal of Documentation, 75(6), 1432–1462. https://doi.org/10.1108/JD-12-2018-0211

Cox, A. M., Pinfield, S., & Rutter, S. (2019b). The intelligent library: Thought leaders’ views on the likely impact of artificial intelligence on academic libraries. Library Hi Tech, 37(3), 418–435. https://doi.org/10.1108/LHT-08-2018-0105

Dent, V. F. (2007). Intelligent agent concepts in the modern library. Library Hi Tech, 25(1), 108–125. https://doi.org/10.1108/07378830710735894

Du, L. (2020). Method of constructing the innovation service platform of colleges and universities based on artificial intelligence. IOP Conference Series: Materials Science and Engineering, 750, 012087. https://doi.org/10.1088/1757-899X/750/1/012087

EDUCASE. (2020). 2020 EDUCAUSE Horizon report: Teaching and learning edition. https://library.educause.edu/resources/2020/3/2020-educause-horizon-report-teaching-and-learning-edition

Enis, M., Peet, L., & Schwartz, M. (2018). ALA Midwinter 2018 | Redefining libraries & ALA. Library Journal, 143(5), 18–19. http://search.ebscohost.com/login.aspx?direct=true&db=ehh&AN=128417773&site=ehost-live

Ennis, D., Medaille, A., Lambert, T., Kelley, R., & Harris, F. C. (2013). A comparison of academic libraries: An analysis using a self-organizing map. Performance Measurement and Metrics, 14(2), 118–131. https://doi.org/10.1108/PMM-07-2012-0026

Ewing, K., & Hauptman, R. (1995). Is traditional reference service obsolete? The Journal of Academic Librarianship, 21(1), 3–6. https://doi.org/10.1016/0099-1333(95)90144-2

ExLibris. (2019). Artificial intelligence in the library: Advantages, challenges and tradition [White Paper]. ExLibris.

Färber, M., & Sampath, A. (2020). HybridCite: A hybrid model for context-aware citation recommendation. Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (pp. 117–126). https://doi.org/10.1145/3383583.3398534

Federer, L., Clarke, S. C., & Zaringhalam, M. (2020). Developing the librarian workforce for data science and open science. https://doi.org/10.31219/osf.io/uycax

Finnemann, N. O. (2014). Research libraries and the internet: On the transformative dynamic between institutions and digital media. Journal of Documentation, 70(2), 202–220. https://doi.org/10.1108/JD-05-2013-0059

Fox, R. (2010). Reference redivivus. OCLC Systems & Services: International Digital Library Perspectives, 26(3), 156–161. https://doi.org/10.1108/10650751011073599

Frederick, D. E. (2017). Disruption or revolution? The reinvention of cataloguing (Data Deluge Column). Library Hi Tech News, 34(7), 6–11. https://doi.org/10.1108/LHTN-07-2017-0051

Garzone, M., & Mercer, R. E. (2000). Towards an automated citation classifier. In H. J. Hamilton (Ed.), Advances in artificial intelligence (pp. 337–346). Springer. https://doi.org/10.1007/3-540-45486-1_28

Gasparini, A., Mohammed, A. A., & Oropallo, G. (2018). Service design for artificial intelligence. ServDes.2018 Conference Proceedings Co-Creating Services, 1064–1073.

Golub, K. (2006). Automated subject classification of textual web documents. Journal of Documentation, 62(3), 350–371. https://doi.org/10.1108/00220410610666501

Golub, K., Hagelback, J., & Ardo, A. (2020). Automatic classification of Swedish metadata using Dewey Decimal Classification: A comparison of approaches. Journal of Data and Information Science, 5(1), 18–38. https://doi.org/10.2478/jdis-2020-0003

Gorichanaz, T., Furner, J., Ma, L., Bawden, D., Robinson, L., Dixon, D., Herold, K., Søe, S. O., Van der Veer Martens, B., & Floridi, L. (2020). Information and design: Book symposium on Luciano Floridi’s The logic of information. Journal of Documentation, 76(2), 586–616. https://doi.org/10.1108/JD-10-2019-0200

Griffey, J. (2019a). Chapter 1. Introduction. Library Technology Reports, 55(1), 5–9.

Griffey, J. (2019b). Chapter 5. Conclusion. Library Technology Reports, 55(1), 26–28.

Gruss, R., Abrahams, A., Song, Y., Berry, D., & Al-Daihani, S. M. (2020). Community building as an effective user engagement strategy: A case study in academic libraries. Journal of the Association for Information Science and Technology, 71(2), 208–220. https://doi.org/10.1002/asi.24218

Guerra, C. A. N., & Da Silva, F. S. C. (2008). Semantic web services for intelligent responsive environments, 8, 13–21. Scopus.

Guo, J.-L., Wang, H.-C., & Lai, M.-W. (2015). A feature selection approach for automatic e-book classification based on discourse segmentation. Program, 49(1), 2–22. https://doi.org/10.1108/PROG-12-2012-0071

Hahn, J. (2019). Evaluating systematic transactional data enrichment and reuse. Proceedings of the Conference on Artificial Intelligence for Data Discovery and Reuse (pp. 1–4). https://doi.org/10.1145/3359115.3359116

Hahn, J., & McDonald, C. (2018). Account-based recommenders in open discovery environments. Digital Library Perspectives, 34(1), 70–76. https://doi.org/10.1108/DLP-07-2017-0022

Hähner, U., & Seeger, B. (2009). IT-supported long-term risk analysis for the Savigny Estate at Marburg University Library. Restaurator. International Journal for the Preservation of Library and Archival Material, 30(3), 149–164. https://doi.org/10.1515/rest.010

Hauptmann, A. G., Witbrock, M. J., & Christel, M. G. (1997). Artificial intelligence techniques in the interface to a digital video library. CHI ’97 Extended Abstracts on Human Factors in Computing Systems, 2–3. https://doi.org/10.1145/1120212.1120214

Head, A., Fister, B., & MacMillan, M. (2020). Information literacy in the age of algorithms (p. 55). Project information literacy. https://www.projectinfolit.org/algo_study.html

Henry, G. (2019). Research librarians as guides and navigators for AI policies at universities. Research Library Issues, 299, 47–66.

Hepworth, M. (2007). Knowledge of information behaviour and its relevance to the design of people-centred information products and services. Journal of Documentation, 63(1), 33–56. https://doi.org/10.1108/00220410710723876

Hjørland, B. (2012). Is classification necessary after Google? Journal of Documentation, 68(3), 299–317. https://doi.org/10.1108/00220411211225557

Hofman-Apitius, M., Younesi, E., & Kasam, V. (2009). Direct use of information extraction from scientific text for modeling and simulation in the life sciences. Library Hi Tech, 27(4), 505–519. https://doi.org/10.1108/07378830911007637

Iantovics, L. B., Kovacs, L., & Fekete, G. L. (2016). Next generation university library information systems based on cooperative learning. New Review of Information Networking, 21(2), 101–116. https://doi.org/10.1080/13614576.2016.1247742

Ibekwe-SanJuan, F. (2006). Constructing and maintaining knowledge organization tools: A symbolic approach. Journal of Documentation. https://doi.org/10.1108/00220410610653316

Iqbal, N., Jamil, F., Ahmad, S., & Kim, D. (2020). Toward effective planning and management using predictive analytics based on rental book data of academic libraries. Ieee Access, 8, 81978–81996. https://doi.org/10.1109/ACCESS.2020.2990765

Jadhav, D., & Shenoy, D. (2020). Measuring the smartness of a library. Library & Information Science Research, 42(3), 101036. https://doi.org/10.1016/j.lisr.2020.101036

Jakeway, E. (2020). Machine learning + Libraries summit event summary (p. 39). Library of congress. https://labs.loc.gov/static/labs/meta/ML-Event-Summary-Final-2020-02-13.pdf

Javier Cabrerizo, F., Angeles Martinez, M., Lopez-Gijon, J., Chiclana, F., & Herrera-Viedma, E. (2015). A web information system to improve the digital library service quality. In H. Fujita & S. F. Su (Eds.), New Trends on System Sciences and Engineering (Vol. 276, pp. 3–16). Ios Press. https://doi.org/10.3233/978-1-61499-522-7-3

Johnson, B. (2018). Libraries in the age of artificial intelligence. Computers in Libraries, 38(1). http://www.infotoday.com/cilmag/jan18/Johnson--Libraries-in-the-Age-of-Artificial-Intelligence.shtml

Johnson, S. (2019). Technology innovation and AI ethics. Research Library Issues, 299, 14-27.

Johnston, M., & Weckert, J. (1990). Selection advisor: An expert system for collection development. Information Technology and Libraries, 9(3), 219–225. Scopus.

Joorabchi, A., & E. Mahdi, A. (2013). Classification of scientific publications according to library controlled vocabularies: A new concept matching-based approach. Library Hi Tech, 31(4), 725–747. https://doi.org/10.1108/LHT-03-2013-0030

Kanarkard, W., Seemajaruek, C., Pongsuwan, T., & Inlam, T. (2017). Predictive analytic of library patron behavior. Proceedings of the 3rd International Conference on Communication and Information Processing (pp. 1–5). https://doi.org/10.1145/3162957.3162961

Kennedy, M. L. (2019). What do artificial intelligence (AI) and ethics of AI mean in the context of research libraries? Research Library Issues, 299. https://publications.arl.org/18nm1db/

Keshavarz, H. (2008). Human information behaviour and design, development and evaluation of information retrieval systems. Program, 42(4), 391–401. https://doi.org/10.1108/00330330810912070

Kim, B. (2019a). Chapter 3. AI and creating the first multidisciplinary AI lab. Library Technology Reports, 55(1), 16–20.

Kim, B. (2019b, August 21). AI-powered robots for libraries: Exploratory questions. Technical Services Department Faculty Publications. IFLA WLIC conference, Wildau, Germany. https://digitalcommons.uri.edu/lib_ts_pubs/113

Koehler, W. (2004). Digital libraries, digital containers, “library patrons”, and visions for the future. The Electronic Library, 22(5), 401–407. https://doi.org/10.1108/02640470410561910

Kushkowski, J. D., Shrader, C. B., Anderson, M. H., & White, R. E. (2020). Information flows and topic modeling in corporate governance. Journal of Documentation, 76. https://doi.org/10.1108/JD-10-2019-0207

Lee, C. A. (Cal). (2011). A framework for contextual information in digital collections. Journal of Documentation, 67(1), 95–143. https://doi.org/10.1108/00220411111105470

Litsey, R., & Mauldin, W. (2018). Knowing what the patron wants: Using predictive analytics to transform library decision making. The Journal of Academic Librarianship, 44(1), 140–144. https://doi.org/10.1016/j.acalib.2017.09.004

Lorang, E., Soh, L.-K., Liu, Y., & Pack, C. (2020). Digital libraries, intelligent data analytics, and augmented description: A demonstration project. Faculty Publications, UNL Libraries. https://digitalcommons.unl.edu/libraryscience/396

Lund, B. D. (2020). Four categories of academic libraries: A cluster analysis based on collections, expenditures, and circulation per student data. Library Collections Acquisitions & Technical Services. https://doi.org/10.1080/14649055.2020.1794748

Lund, B. D., Omame, I., Tijani, S., & Agbaji, D. (2020). Perceptions toward artificial intelligence among academic library employees and alignment with the diffusion of innovations’ adopter categories | Lund | College & Research Libraries. College and Research Libraries, 81(5), 865–882. https://doi.org/10.5860/crl.81.5.865

Madhusudhan, M., & Nagabhushanam, V. (2012). Web-based library services in university libraries in India: An analysis of librarians’ perspective. The Electronic Library, 30(5), 569–588. https://doi.org/10.1108/02640471211275657

Maringanti, H., Samarakoon, D., & Zhu, B. (2019). Machine learning meets library archives: Image Analysis to generate descriptive metadata. Univeristy of Utah. https://www.lyrasis.org/Leadership/Documents/Catalyst%20Fund/UU-version2-MachineLearning-CatalystFund-WhitePaper.pdf

Massis, B. (2018). Artificial intelligence arrives in the library. Information and Learning Science, 119(7/8), 456–459. https://doi.org/10.1108/ILS-02-2018-0011

Miller, J. (2020). The new library user: Machine learning. EDUCASE Review, 55(1). https://er.educause.edu/articles/2020/2/the-new-library-user-machine-learning

Mitchell, S. (2006). Machine assistance in collection building: New tools, research, issues, and reflections. Information Technology and Libraries, 25(4), 190–216. https://doi.org/10.6017/ital.v25i4.3353

Montaner, M., López, B., & de la Rosa, J. L. (2003). A taxonomy of recommender agents on the internet. Artificial Intelligence Review, 19(4), 285–330. https://doi.org/10.1023/A:1022850703159

Morriello, R. (2019). Blockchain, artificial intelligence and Internet of things in libraries. Aib Studi, 59(1–2), 45–68. https://doi.org/10.2426/aibstudi-11927

Muehlberger, G., Seaward, L., Terras, M., Ares Oliveira, S., Bosch, V., Bryan, M., Colutto, S., Déjean, H., Diem, M., Fiel, S., Gatos, B., Greinoecker, A., Grüning, T., Hackl, G., Haukkovaara, V., Heyer, G., Hirvonen, L., Hodel, T., Jokinen, M., … Zagoris, K. (2019). Transforming scholarship in the archives through handwritten text recognition: Transkribus as a case study. Journal of Documentation, 75(5), 954–976. https://doi.org/10.1108/JD-07-2018-0114

Myhill, M., Shoebridge, M., & Snook, L. (2009). Virtual research environments – a Web 2.0 cookbook? Library Hi Tech, 27(2), 228–238. https://doi.org/10.1108/07378830910968182

Neumann, A. W., & Geyer-Schulz, A. (2008). Applying small sample test statistics for behavior-based recommendations. In C. Preisach, H. Burkhardt, L. SchmidtThieme, & R. Decker (Eds.), Data analysis, machine learning and applications (pp. 541–549). Springer-Verlag Berlin. https://doi.org/10.1007/978-3-540-78246-9_64

Niininen, S., Nykyri, S., & Suominen, O. (2017). The future of metadata: Open, linked, and multilingual – the YSO case. Journal of Documentation, 73(3), 451–465. http://dx.doi.org/10.1108/JD-06-2016-0084

Nolin, J. M. (2013). The special librarian and personalized meta-services: Strategies for reconnecting librarians and researchers. Library Review, 62(8/9), 508–524. https://doi.org/10.1108/LR-02-2013-0015

Ochilbek, R. (2019). Using data mining techniques to predict and detect important features for book borrowing rate in academic libraries. 2019 15th International Conference on Electronics, Computer and Computation (ICECCO), 1–5. https://doi.org/10.1109/ICECCO48375.2019.9043203

Padilla, T. (2019). Responsible operations: Data science, machine learning, and AI in libraries. https://www.oclc.org/research/publications/2019/oclcresearch-responsible-operations-data-science-machine-learning-ai.html

Porcel, C., Lopez-Herrera, A. G., & Herrera-Viedma, E. (2009). A recommender system for research resources based on fuzzy linguistic modeling. Expert Systems with Applications, 36(3), 5173–5183. https://doi.org/10.1016/j.eswa.2008.06.038

Porcel, C., Ching-Lopez, A., Bernabe-Moreno, J., Tejeda-Lorente, A., & Herrera-Viedma, E. (2017). Fuzzy linguistic recommender systems for the selective diffusion of information in digital libraries. Journal of Information Processing Systems, 13(4), 653–667. https://doi.org/10.3745/JIPS.04.0035

Powell, J., Collins, L., Eberhardt, A., Izraelevitz, D., Roman, J., Dufresne, T., Scott, M., Blake, M., & Grider, G. (2012). “At scale” author name matching with Hadoop/MapReduce. Library Hi Tech News, 29(4), 6–12. https://doi.org/10.1108/07419051211249455

Rah, J. A., Gul, S., & Ashraf Wani, Z. (2010). University libraries: Step towards a web based knowledge management system. VINE, 40(1), 24–38. https://doi.org/10.1108/03055721011024900

Ramanayaka, K. H., Chen, X., & Shi, B. (2016). Preference of Analytical Hierarchical Process (AHP) for assessing web presence: An assessment of websites of university libraries of Sri Lanka. 2016 International Conference on Progress in Informatics and Computing (PIC) (pp. 748–752). https://doi.org/10.1109/PIC.2016.7949598

Riddick, J. (1990). New world in the morning: Artificial intelligence. Serials: The Journal for the Serials Community, 3(2), 50–54. https://doi.org/10.1629/030250

Ridley, M. (2019). Explainable artificial intelligence. Research Library Issues, 299, 28–46.

Rubin, V. L., Chen, Y., & Thorimbert, L. M. (2010). Artificially intelligent conversational agents in libraries. Library Hi Tech, 28(4), 496–522. https://doi.org/10.1108/07378831011096196

Schneider, J., Adams, C., DeBauche, S., Echols, R., McKean, C., Moran, J., & Waugh, D. (2019). Appraising, processing, and providing access to email in contemporary literary archives. Archives and Manuscripts, 47(3), 305–326. https://doi.org/10.1080/01576895.2019.1622138

Schoeb, D., Suarez-Ibarrola, R., Hein, S., Dressler, F. F., Adams, F., Schlager, D., & Miernik, A. (2020). Use of artificial intelligence for medical literature search: Randomized controlled trial using the Hackathon format. Interactive Journal of Medical Research, 9(1), e16606. https://doi.org/10.2196/16606

Sidorko, P. E. (2009). Virtually there, almost: Educational and informational possibilities in virtual worlds. Library Management, 30(6/7), 404–418. https://doi.org/10.1108/01435120910982104

Siguenza-Guzman, L., Saquicela, V., Avila-Ordóñez, E., Vandewalle, J., & Cattrysse, D. (2015). Literature review of data mining applications in academic libraries. The Journal of Academic Librarianship, 41(4), 499–510. https://doi.org/10.1016/j.acalib.2015.06.007

Smith, L. C. (1976). Artificial intelligence in information retrieval systems. Information Processing & Management, 12(3), 189–222. https://doi.org/10.1016/0306-4573(76)90005-4

Steele, K. (2011). The singularity and the library. The Bottom Line, 24(4), 227–229. https://doi.org/10.1108/08880451111193325

Stehno, B., & Retti, G. (2003). Modelling the logical structure of books and journals using augmented transition network grammars. Journal of Documentation, 59(1), 69–83. https://doi.org/10.1108/00220410310458019

Stribling, J., Councill, I. G., Li, J. Y., Kaashoek, R., Karger, D. R., Morris, R., & Shenker, S. (2005). OverCite: A cooperative digital research library. In M. Castro & R. VanRenesse (Eds.), Peer-to-Peer Systems Iv (Vol. 3640, pp. 69–79). Springer-Verlag Berlin.

Suominen, O. (2019). Annif: DIY automated subject indexing using multiple algorithms. https://www.doria.fi/handle/10024/169004

Tsuji, K., Yoshikane, F., Sato, S., & Itsumura, H. (2014). Book recommendation using machine learning methods based on library loan records and bibliographic information. 2014 IIAI 3rd International Conference on Advanced Applied Informatics (pp. 76–79). https://doi.org/10.1109/IIAI-AAI.2014.26

Uzwyshyn, R. J. (2018). Academic libraries and technology: An environmental scan towards future possibilities. In Academic and Digital Libraries: Emerging Directions and Trends (pp. 63–86). Scopus.

Von Seggern, M., Merrill, A., & Zhu, L. (2010). “Sense of place” in digital collections. OCLC Systems & Services: International Digital Library Perspectives, 26(4), 273–282. https://doi.org/10.1108/10650751011087639

Voorbij, H. (2012). The value of LibraryThing tags for academic libraries. Online Information Review, 36(2), 196–217. https://doi.org/10.1108/14684521211229039

Walch, V. I. (1993). Final report: Automated records and techniques curriculum development project: Committee on automated records and techniques. The American Archivist, 56(3), 468–505. JSTOR.

Walker, K. W., & Jiang, Z. (2019). Application of adaptive boosting (AdaBoost) in demand-driven acquisition (DDA) prediction: A machine-learning approach. The Journal of Academic Librarianship, 45(3), 203–212. https://doi.org/10.1016/j.acalib.2019.02.013

Wang, X. (2011). Research of user-oriented university library information resources integration model. 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC) (pp. 7182–7185). https://doi.org/10.1109/AIMSEC.2011.6011466

Wang, X., & Cao, H. (2014). Study on building library personalized subject service platform in big data environment-Lib 2.0 Solutions based on Hadoop framework. In H. Ma, W. Wang, & Y. Zhang (Eds.), 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems (CCIS) (pp. 146–149). IEEE.

Watkins, T. (2019). Cosmology of artificial intelligece project: libraries, makerspaces, community and AI literacy. AI Matters, 5(4), 14–17. https://doi.org/10.1145/3375637.3375643

Wen, G., & Li, C. (2019). Research on hybrid recommendation model based on PersonRank algorithm and TensorFlow platform. In 2018 International Symposium on Power Electronics and Control Engineering (ispece 2018) (Vol. 1187, pp. 042086). Iop Publishing Ltd. https://doi.org/10.1088/1742-6596/1187/4/042086

Wetzler, P. G., Bethard, S., Butcher, K., Martin, J. H., & Sumner, T. (2009). Automatically assessing resource quality for educational digital libraries. Proceedings of the 3rd Workshop on Information Credibility on the Web (pp. 3–10). https://doi.org/10.1145/1526993.1526997

Wheatley, A., & Hervieux, S. (2019). Artificial intelligence in academic libraries: An environmental scan. Information Services & Use, 39(4), 347–356. https://doi.org/10.3233/ISU-190065

White, H., Willis, C., & Greenberg, J. (2014). HIVEing: The effect of a semantic web technology on inter-indexer consistency. Journal of Documentation, 70(3), 307–329. https://doi.org/10.1108/JD-07-2012-0083

Xia, T., & Liu, Y. (2019). Application of improved association-rules mining algorithm in the circulation of university library. In X. Wang (Ed.), 2018 International Conference on Big Data and Artificial Intelligence (icbdai 2018) (pp. 60–64). Francis Acad Press. https://doi.org/10.25236/icbdai.2018.010

Yelton, A. (2019). Chapter 2. HAMLET: Neural-net-powered prototypes for library discovery. Library Technology Reports, 55(1), 10–15.

Ylipulli, J., & Luusua, A. (2019). Without libraries what have we? Public libraries as nodes for technological empowerment in the era of smart cities, AI and big data. Proceedings of the 9th International Conference on Communities & Technologies – Transforming Communities (pp. 92–101). https://doi.org/10.1145/3328320.3328387

Yue, Z., & Jia, Y. (2008). interval intuitionistic fuzzy comprehensive evaluation for the degree of reader’s satisfaction in university library. 2008 International Symposium on Computational Intelligence and Design, 1, 146–149. https://doi.org/10.1109/ISCID.2008.105

Zhou, Q. (2005). The development of digital libraries in China and the shaping of digital librarians. The Electronic Library, 23(4), 433–441. https://doi.org/10.1108/02640470510611490

Zhu, Z., & Wang, J. -Y. (2007). Book recommendation service by improved association rule mining algorithm. In Proceedings of 2007 International Conference on Machine Learning and Cybernetics, Vols 1-7 (pp. 3864–3869). IEEE.

Zhu, Q., Wu, Y., Li, Y., Han, J., & Zhou, X. (2018). Text mining based theme logic structure identification: Application in library journals. Library Hi Tech, 36(3), 411–425. https://doi.org/10.1108/LHT-10-2017-0211