Topics of the trainings in 2010–2021.
Sourcea | Planning and organisation | Sharing and reuse | Storage, backup, security | Metadata and data description | Preservation | Legal and ethical issues | Quality and documentation | Types and Formats | Life cycle | Discovery | Policies, requirements, incentives | Processing | Cultures of Practice |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | |||||||||
ARDS, 2018b | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
1 | 1 | 1 | 1 | 1 | 1 | ||||||||
1 | 1 | ||||||||||||
1 | 1 | 1 | |||||||||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
EDINAd | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
1 | 1 | 1 | 1 | 1 | |||||||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
1 | 1 | 1 | 1 | 1 | 1 | ||||||||
1 | 1 | 1 | 1 | 1 | 1 | ||||||||
1 | 1 | 1 | 1 | ||||||||||
1 | 1 | ||||||||||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
1 | 1 | 1 | 1 | 1 | |||||||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
1 | 1 | 1 | 1 | 1 | 1 | ||||||||
SUM | 27 | 25 | 21 | 21 | 21 | 17 | 17 | 14 | 14 | 13 | 12 | 8 | 7 |
Source | Visualisation and representation | Conversion and interoperability | Collection planning | Analysis | Budgeting | Cleaning | Databases | Encoding | Planning research project | Big data | Cloud computing | Planning curation profile |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ARDS, 2018 | ||||||||||||
1 | 1 | 1 | 1 | 1 | ||||||||
1 | ||||||||||||
1 | ||||||||||||
EDINA | 1 | 1 | 1 | |||||||||
1 | ||||||||||||
1 | 1 | 1 | ||||||||||
1 | 1 | |||||||||||
1 | ||||||||||||
1 | 1 | 1 | 1 | 1 | 1 | |||||||
1 | 1 | |||||||||||
1 | ||||||||||||
1 | 1 | |||||||||||
1 | 1 | 1 | ||||||||||
1 | ||||||||||||
1 | 1 | 1 | ||||||||||
SUM | 7 | 4 | 4 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 1 |
aFor details of source, see references of main text.
bAustralian Research Data Commons:
c
d
Participants by their disciplines 2019–2021.
Year | 2019 | 2020 | 2021 | Sum |
---|---|---|---|---|
Law | 1 | 0 | 1 | 2 |
Education, Welfare | 3 | 8 | 8 | 19 |
Humanities, Psychology, Theology | 4 | 16 | 12 | 32 |
Social Sciences, Business, Economics | 6 | 22 | 38 | 66 |
Science and Engineering | 5 | 28 | 30 | 63 |
Health Sciences | 23 | 22 | 32 | 77 |
Sum | 42 | 96 | 121 | 259 |
What are the three things you have learned?
Category | 2019 | 2020 | 2021 |
---|---|---|---|
What, why and when in RDM | 100 | 112 | 55 |
Importance of legal considerations | 64 | 19 | 9 |
Making a sound research plan | 38 | 26 | 10 |
Securing data privacy | 29 | 17 | 24 |
Using data collecting or organizing software | 17 | 7 | 10 |
Other comments | 4 | 13 | 11 |
Sum | 252 | 194 | 119 |
How will the things you have learned change your practices?
Category | 2019 | 2020 | 2021 |
---|---|---|---|
I will pay notice to IPR, agreements and licenses | 25 | 9 | 5 |
I will improve data management planning and documenting | 18 | 73 | 31 |
I will collect, produce or process data with REDCap or Nvivo | 17 | 6 | 3 |
I will pay more notice to data privacy and security | 13 | 22 | 16 |
I will improve my research plan | 13 | 17 | 5 |
Other comments | 1 | 5 | 3 |
Sum | 87 | 132 | 63 |
How would you suggest the module be developed?
Category | 2019 | 2020 | 2021 |
---|---|---|---|
Increase practicality, e.g., good and bad examples and check lists | 34 | 30 | 29 |
Clarifying and standardizing procedures, practices, and course platform | 23 | 53 | 42 |
Increase discussions and interactivity | 12 | 22 | 4 |
Possibility to prepare one’s own study plan and DMP | 7 | 0 | 0 |
Differentiating the course contents according to discipline, data type, methods | 6 | 9 | 10 |
Turning to hybrid or contact course | 0 | 12 | 0 |
Good as it is | 0 | 0 | 12 |
Other comments | 8 | 10 | 4 |
Sum | 90 | 136 | 101 |
Competencies before and after BRDM 2019 (medians, custom quantiles, and p-values).
Competence | Median, before | Q1; Q3 | Median, after | Q1; Q3 | p-value (Fit Y by X; Wilcoxon rank-sum test) |
---|---|---|---|---|---|
Discovery and acquisition of data | 1.97 | 1.78; 2.14 | 2.39 | 2.12; 2.84 | 0.02 |
Databases and data formats | 2.02 | 1.82; 2.22 | 2.38 | 2.07; 2.89 | 0.04 |
Data conversion and interoperability | 1.83 | 1.17; 1.98 | 2.08 | 1.81; 2.65 | 0.07 |
Data management and organization | 1.95 | 1.76; 2.14 | 2.63 | 2.16; 3 | 0.001 |
Data quality and documentation | 2.01 | 1.98; 2.06 | 2.62 | 2.11; 2.94 | 0.02 |
Metadata and data description | 1.91 | 1.76; 2 | 2.72 | 2.21; 2.91 | <0.001 |
Cultures of practice | 1.96 | 1.81; 2.08 | 2.22 | 1.86; 3 | 0.07 |
Ethics and attribution | 2.11 | 2.03; 2.69 | 2.89 | 2.37; 3.10 | 0.01 |
Data curation and reuse | 1.89 | 1.31; 1.97 | 2.15 | 2.04; 2.68 | 0.001 |
Data preservation | 1.93 | 1.80; 2 | 2.62 | 2.11; 2.94 | 0.001 |
Median, custom quantiles, p-value | 1.96 | 1.82; 2.09 | 2.32 | 2.12; 2.84 | 0.003 |
Competencies before and after BRDM 2020–2021 (medians, custom quantiles, and p-values).
Knowledge, skill, or ability | Median, before | Q1; Q3 | Median, after | Q1; Q3 | p-value (Distributions; Wilcoxon signed-rank test) |
---|---|---|---|---|---|
Describing your research and data collection process to identify your data lifecycle | 2.07 | 2.03; 2.14 | 3.08 | 3.05; 3.13 | <0.0001 |
Recognizing the necessary components of a data management plan | 1.95 | 1.89; 1.99 | 3.11 | 3.07; 3.82 | <0.0001 |
Creating a data management plan to manage and curate your own data | 1.83 | 1.12; 1.93 | 3.06 | 3.03; 3.10 | <0.0001 |
Documenting your data for yourself and others | 2.06 | 2.02; 2.13 | 3.07 | 3.04; 3.12 | <0.0001 |
Applying the relevant laws, agreements, permits, and licenses to your data | 1.87 | 1.14; 1.93 | 2.93 | 2.88; 2.97 | <0.0001 |
Applying the basic anonymization methods for qualitative and quantitative research when needed | 2.05 | 2; 2.13 | 3.01 | 2.97; 3.06 | <0.0001 |
Recognizing the importance of data protection for collecting, processing, storage and sharing of data | 2.08 | 2.03; 2.20 | 3.11 | 3.06; 3.83 | <0.0001 |
Creating a data privacy statement and a risk analysis when needed | 1.9 | 1.16; 1.97 | 2.94 | 2.89; 2.98 | <0.0001 |
Creating a database or a survey for capturing and maintaining your data using REDCap software | 1.13 | 1.06; 1.23 | 2.99 | 2.83; 3.14 | <0.0001 |
Organizing and coding your qualitative data for analyzing using NVivo software | 1.59 | 1.29; 2.23 | 3.01 | 2.88; 3.16 | <0.0001 |
Creating a storage and backup plan, and applying it to your data using the services of your organization, or the services of The IT Center for Science (CSC) | 1.96 | 1.82; 2.09 | 3 | 2.88; 3.12 | <0.0001 |
Evaluating data repositories for depositing and publishing your data and discovering other researchers’ data for re-use | 1.18 | 1.1; 1.92 | 2.97 | 2.93; 3.01 | <0.0001 |
Applying FAIR principles to your data when possible | 1.9 | 1.15; 1.97 | 2.98 | 2.86; 3.08 | <0.0001 |
Applying data management best practices concerning collecting, organizing, documenting, storing, long-term preserving, and sharing (when possible) to your own data | 2.01 | 1.91; 2.12 | 3.03 | 2.98; 3.09 | <0.0001 |
Median, custom quantiles, p-value | 1.97 | 1.93; 2.01 | 3.03 | 2.98; 3.08 | <0.0001 |